GREEN ENERGY

Tim Counihan

March 3, 2020

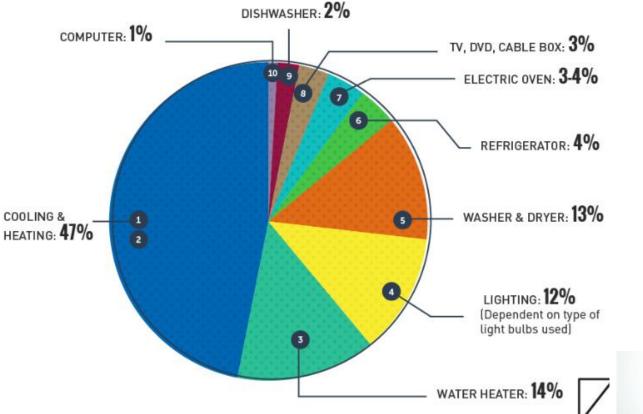
My Definition of Green Energy

- Clean no emissions or residuals
- Abundant/Perpetual/Inexhaustible
 - Fuel is essentially free
 - Creating energy has a capital cost, but no incremental direct cost
- Wind, solar, and other potential energy (hydro, tidal, thermal,...)
- Not
 - Natural gas
 - Nuclear
 - Biofuels

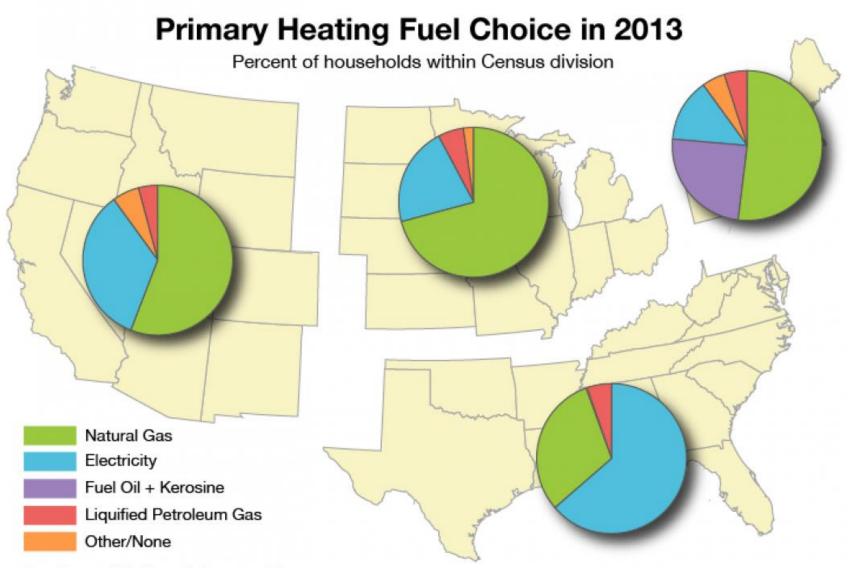
GREEN ENERGY IN THE HOME INCLUDING PERSONAL TRANSPORTATION

Who's Got What? And Why?

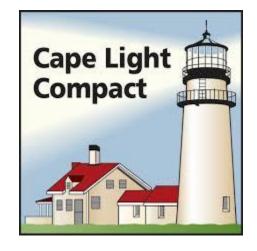
- LED bulbs
- Programmable thermostat
- Double pane/Low E windows
- Foam insulation
- Cape Light Compact audit
- Heat pump HVAC
- Heat pump hot water heater
- Solar panels
- Home battery backup
- Electric car


Syllabus – Green Energy in the Home

- Energy Sources and Usage
- Going Green Requires Going Electric
 - Assumptions about electric power
 - Approaches
 - Conversion to electric
 - Conservation/increased efficiency
 - Technologies


Uses of Energy in the Home *

* Your energy use for personal transportation is roughly equivalent to your use in the home!



Data Source: U.S. Energy Information Administration

Home Energy Audit – Cape Light Compact

- Immediate savings for free
 - LED bulbs, advanced power strips, programmable thermostats
 - Low flow shower heads, aerators
- Assessment of needs
 - Free air sealing
 - Subsidized insulation
 - Generous rebates for HVAC and water heaters
 - o% interest loans
- Supplier of green energy Rates
- Special programs for low- and moderate-income customers What's
 Quick references From 5
- Quick reference: Energy Star Home Energy Yardstick

Emerging Technologies in the Home

- Electric motors for transportation and power
- Heat pumps for heating and cooling
- LEDs for lighting
- Improvements in your home's thermal envelope
- Improved control systems
- Solar panels for generating electricity

Electric Motors

- Consume over 1/2 the electricity generated in the US
- Vehicles
- Large and small appliances
- Yard equipment
- Tools
- Electronics
- Generators

History of Electric Motors

- "Brushed" DC motor developed by Von Siemens in late 1800s
 - 75 80% efficient, subject to wear
- AC Induction motor developed by Tesla in 1924
- Brushless invented in 1962 Wilson/Trickey
 - These were solid state motors (controlled by semiconductor "chips")
 - Newest microcontrollers enable 98% efficiency in small motors
 - Microcontroller captures position and controls PWM of motor
 - Quiet, frictionless, sparkless, cool, more efficient, reliable
- New products enabled (with improved battery technology) :
 - Bladeless fans, electric vehicles, cordless power tools, etc

Electric Cars

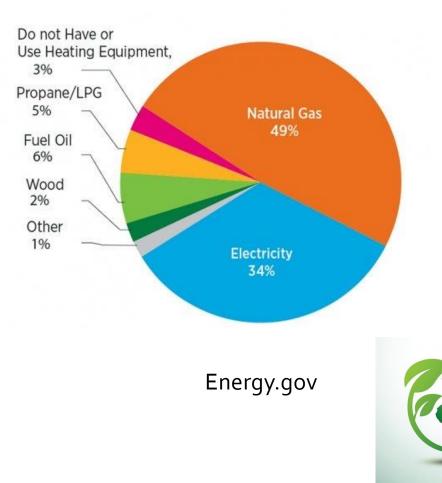
- A <u>2018 study</u> from the University of Michigan found that electric vehicles cost less than half as much to operate as gas-powered cars. The average cost to operate an EV in the United States is \$485 per year, while the average for a gasoline-powered vehicle is \$1,117.
- Maintaining an electric car, according to some estimates, will cost about one-third the current cost of maintaining a gasoline-powered car.

Internals of the Electric Car

- Battery pack
- Inverter
- Induction motor
 - RMF Rotating Magnetic Field
- Other
 - Transmission
 - Open differential
 - Regenerative braking
- https://youtu.be/3SAxXUIre28

Electric versus Internal Combustion Motors

- Path to Lower Production Cost
- Lower Maintenance Costs
 - Simple drive train
 - Rotational energy
 - Minimal ancillary components
- High efficiency (95% versus 25%)
 - Solid state motor
 - Regenerative braking

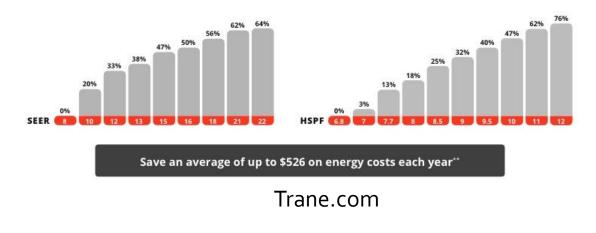

Payback – Electric versus ICE Car

- X = difference in upfront cost
- Y = difference in usage cost/time period
- X/Y = number of payback time periods to recover upfront difference
- Initial cost
 - Kia Soul \$17,500
 - Kia Soul, electric \$34,000 \$7,500 = \$26,500
- Operating cost
 - Fuel for 15K miles: Gas \$1,500, Electric \$579
 - Maintenance: Gas \$1,186, Electric \$982 (or \$474)
- Payback
 - \$9,000 / \$1,125 = 8 years or \$9,000 / \$1,603 = 5.6 years
 - https://newsroom.aaa.com/tag/gas-cost/
 - <u>https://auto.howstuffworks.com/will-electric-cars-require-more-maintenance.htm</u>

Traditional Heating

- Fuel combustion
 - Solid: wood, peat, coal
 - Liquid: oil
 - Gas: natural gas, propane
- Heat transfer
 - To air or to water
 - Blown or pumped
- Heat conversion
 - Atmospheric (70%)
 - Condensing/controlled (90%)
- Electric baseboard

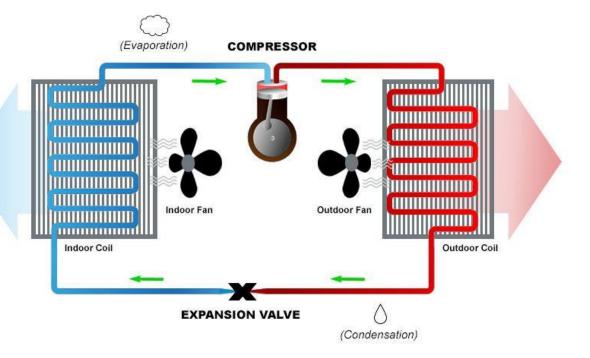
Projected 2019/20 Heating Costs by Fuel

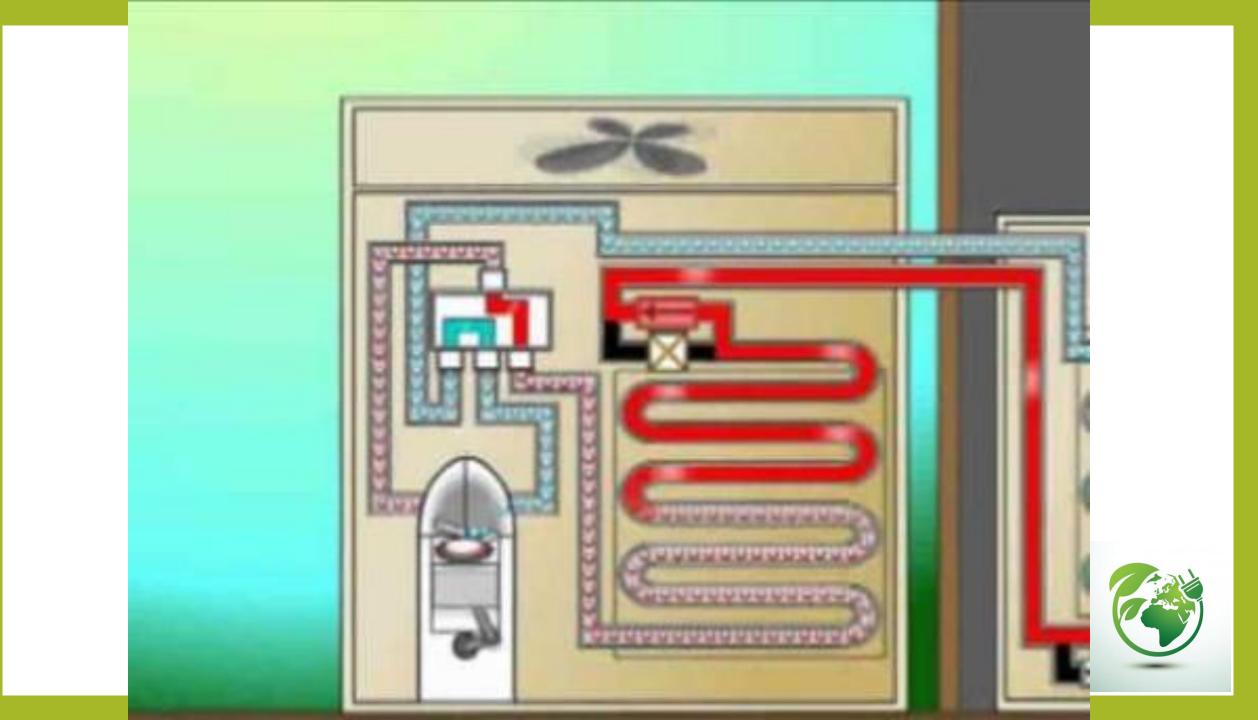

Space Heating Fuel	Estimated Cost
Natural Gas	\$1,082
Modern Wood Heating	\$1,240
Air Source Heat Pump	\$1,439
Heating Oil	\$1,743
Propane	\$2,307
Electric Baseboard (resistance)	\$4,606
- Source: mass.gov	

Heat Pumps: Heating, AC, Refrigeration, HW

- Energy is used to move heat, not generate it
- 2-4 times the efficiency of resistive heating
- Tech improvements:
 - Variable speed fans
 - Variable speed pumps
 - "Cold" operation

ANNUAL SAVINGS FOR COOLING AND HEATING YOUR HOME


based off the efficiency of a matched system*



Internals of the Heat Pump

- Refrigerant Hydrofluorocarbon (HFC R134a versus R12)
- Compressor
 - Condensation –liquifies the refrigerant
- Expansion valve
 - Evaporation cools the refrigerant
- Pumps, Fans, and Controller

Heat Pump versus Traditional Heating

- Uses electricity to transfer heat instead of generating it
- Not capped in terms of efficiency
- Can be applied to both heating and cooling
- Slower in producing heat

Hot Water Heater

- Gas
 - Traditional 50% Efficiency
 - Energy Star: 67% + (intermittent pilot, flue damping, blowers/power venting)
- Electric
 - Traditional: 80% Efficiency
 - Energy Star: 200%+ using heat pump technology
 - Traditional now: 92% and heat pump now 3.6 UEF first hour.
- Cost differences of electric alternatives
 - Operating \$490 versus \$150 per year
 - Installation \$700 versus \$1,500

Payback – Heat Pump Hot Water Heater

- X = difference in upfront cost
- Y = difference in usage cost/time period
- X/Y = number of payback time periods to recover upfront difference

Example

- X = \$1,500 \$700 = \$800
- Y = \$490 \$150 = \$340 per year
- Payback = \$800/\$340 = 2.35 years

Lighting Technology

- Candle
 - Egyptians, 3000 BC
 - Beeswax, animal fat, fire
- Incandescent
 - Edison, 1897
 - Tungsten filament, current
- Florescent (CFL)
 - Hewitt, 1901
 - Mercury vapor, current
- Light Emitting Diode (LED)
 Holonyak, 1962

 - Gallium arsenide, current

Lightbulb Jokes

- Q: How many nuclear engineers does it take to change a light bulb? A: Seven. One to install the new bulb and six to figure out what to do with the old one for the next 10,000 years.
- Q: How many politicians does it take to change a lightbulb? A: Two. One to change it, and another one to change it back again.
- Q: How many economists does it take to change a light bulb? A: None. If the light bulb needed changing the market would have already done it.
- Q: How many climate change skeptics does it take to change a lightbulb? A: None. It's too early to say if the light bulb needs changing.

Cost Comparison of Lighting Technolgies

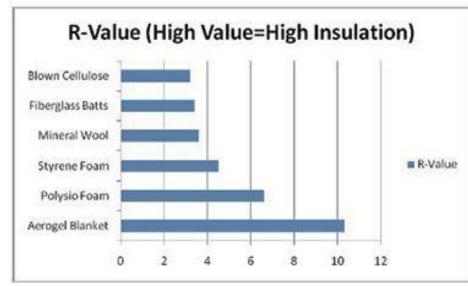
LED vs CFL vs Incandescent Cost	Incandescent	CFL	LED
Watts used	6oW	14W	7W
Average cost per bulb	\$1	\$2	\$4 or less
Average lifespan	1,200 hours	8,000 hours	25,000 hours
Bulbs needed for 25,000 hours	21	3	1
Total purchase price of bulbs over 20 years	\$21	\$6	\$4
Cost of electricity (25,000 hours at \$0.15 per kWh)	\$169	\$52	\$30
Total estimated cost over 20 years	\$211	\$54	\$34

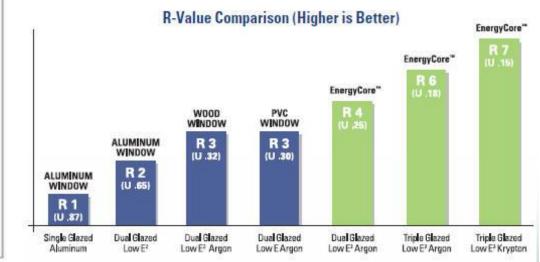
Payback Period – Incandescent versus LED

• Initial cost

X = \$4 - \$1 = \$3

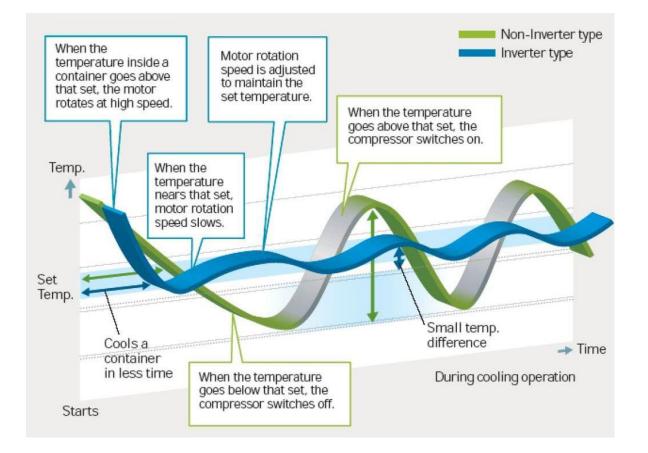
• Operating cost per month at about 3.5 hours/day


Y = (100 * 60 * \$.21) - (100 * 7 * \$.21) = \$1.20 - \$0.15

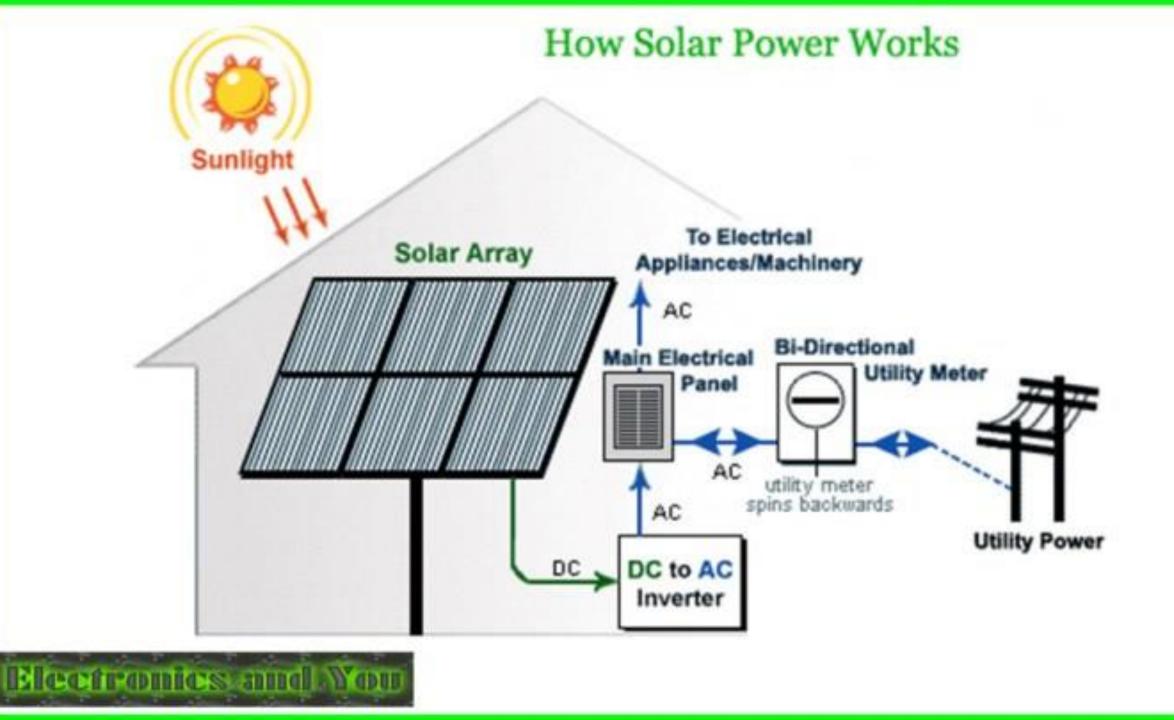

- = \$1.05 per month
- Payback in < 3 months

Improvements in Thermal Envelope Exfiltration and Insulation

- 40% of energy loss is through exfiltration (leakage through gaps)
 - Pressure testing is now required for new construction by code (< 3 ACH)
 - As are sealing methods
- Improvements in thermal resistance of materials
 - Insulation
 - Glass



Controls


- Microprocessors are now in everything
- Enable precision control
 - Motors
 - HVAC
 - Many other devices
- Smart buildings
 - Thermostats
 - Lighting
 - Air and water flow
 - Proximity control

Example of Improved Control

Solar Panel Payback – 36 Panels

- Initial Cost
 - \$40,000 less credits of \$13,000 = \$27,000
- Annual Benefit
 - SRECS \$3600/year for 10 years
 - Energy produced 12 MWhrs * \$.21 = \$2,500/year
- Payback
 - \$27,000 / (\$3,600 + \$2,500) = 4.4 years

What Can You Do?

- Get an Energy Audit
- Convert to efficient lighting, its cheap and easy
- Seal and improve the insulation in you house
- Consider investing in Green appliances where the payback is reasonable
- How long will it take us to go Green?

